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Abstract

Indoor air pollution (IAP) is a leading cause of mortality worldwide,
especially in low and lower-middle-income countries where a large
population relies on dirty fuels for cooking. Using instrumental vari-
ables design and nationally representative survey data from India, this
paper examines the health effects of IAP and investigates how medical
expenditure for such ailments is influenced. Our results show that
solid fuel use for cooking increases the likelihood of suffering from
IAP related ailments and spending more days in hospital conditional
on being admitted to the hospital for IAP related ailments. The med-
ical expenditure for IAP related ailments also increases. The effects
are more pronounced for respondents who report being housemakers
and without access to health insurance.
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1 Introduction

Indoor air pollution (IAP) continues to be a leading mortality risk factor
globally. The impact of IAP on mortality is more pronounced for low-
income countries as large population relies on solid fuel as their primary
source of energy in these countries (Murray et al., 2020). The use of such
fuels generates IAP due to incomplete combustion when they are used
for cooking, lighting, and heating. In addition, women and children who
spend most of their time with mothers are more exposed to IAP and thus
bear a greater burden of potential harmful health effects of IAP.

There is a large literature examining the effect of IAP on health outcomes
in various contexts (Liu et al., 2020). The majority of these works are
epidemiological studies and randomized controlled trials that evaluate the
health effects of IAP from specific policies that aim to increase the adoption
of clean and improvised cooking stoves (Hanna et al., 2016). Specific to the
Indian context, little attention has been paid to the health effects of IAP,
with the majority of the work focusing on studying the determinants of the
adoption of clean fuels for cooking (Basu et al., 2020; Azam, 2023). We aim
to fill this gap in the literature and add to a nascent literature examining the
health effects of IAP due to solid fuel use by the household as its primary
source of energy for cooking.

The use of solid fuel by the household as its primary source of energy
for cooking is endogenous due to multiple reasons. First, unobservable
characteristics of the household may influence both the fuel choice and
health outcomes due to the health behaviors of household members. Sec-
ond, reverse causality from the health outcome of household members to
fuel choice resulting due to the impact of health on income may bias the es-
timates from OLS estimation. In order to address these endogeneity issues,
we rely on an instrumental variables (IV) design where we instrument for
households’ use of solid fuel as its primary source of energy for cooking by
forest cover in the district which the household belongs to (Basu et al., 2020;
Biswas and Das, 2022). Greater forest cover makes it easier for households
to access firewood as it lowers the time spent on collection.

We use data from a nationally representative survey from India. These
data contain information on the type of fuel that a household uses as its
primary source of energy for cooking. We also observe all ailments that
household members suffered in the last 365 days from the date of the
survey, which resulted in the member being admitted to the hospital as
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an in-patient. Further, we also observe all acute ailments that members
suffered from in the last 15 days from the date of the survey, irrespective of
whether the ailment led to hospitalization or not. These data also allow us
to control for various individual and household characteristics that affect
health outcomes.

The results from our preferred IV specification show that the likelihood
that the respondent reports suffering from IAP related ailment in the last
365 days increases by 3.9 percentage points if the household uses solid fuel
as its primary source of energy for cooking. Relative to the sample mean,
this marginal effect corresponds to an increase of 56.61%. We also examine
how being admitted to the hospital for an IAP related ailment impacts
the amount of time spent hospitalized. Our point estimates suggest that,
on average, a respondent report spending an extra day in the hospital for
an IAP related ailment hospitalization relative to a hospitalization that is
not IAP related. Our results also suggest that relative to non IAP related
ailments, IAP related ailments lead to higher levels of reported medical
expenditure.

We also find that the effect is more pronounced for those respondents
who report being a housemaker as their usual principal activity and those
who belong to a household without access to health insurance. Albeit
statistically insignificant, we also find that the effects are more pronounced
for female respondents, households in rural areas, and households with
lower usual monthly per capita expenditure (MPCE). We also establish the
robustness of our results through multiple checks.

With this work, we contribute to multiple strands of literature. We
contribute to a large literature examining the impact of solid fuel use on
the incidence of various health ailments.1 Specific to the Indian context,
many of these studies do not attempt to address potential endogeneity in
solid fuel use by households as its primary source of energy for cooking
(Faizan and Thakur, 2019). We add to this literature by trying to uncover
consistent causal estimates of solid fuel use on the incidence of various IAP
related ailments.

In this regard, our work is very similar to Azam (2023), who use fuel
switching between two nationally representative survey waves to docu-
ment a lower incidence of short-term respiratory ailment by respondents

1See Table A1 in Appendix A of Liu et al. (2020) for studies that examine the impacts of
cooking fuel choice on human health.
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in households that switched from polluting fuels to LPG. Our works differ
from theirs in multiple ways. First, we examine the impact of IAP on long-
term chronic as well short-term ailments. Second, we are able to document
the effect on healthcare utilization as well as medical expenditure for ail-
ments related to IAP. We also add to existing work on the impact of IAP
on mortality by examining less severe morbidity (Basu et al., 2020). Finally,
we also contribute to a large literature that examines the determinants of
clean fuel adoption by examining the impact of continued solid fuel use on
health outcomes (Gould and Urpelainen, 2018; Vyas et al., 2021).

The rest of the paper is organized as follows. Section 2 provides a brief
description of the background of our setting. Section 3 discusses our data
sources and presents descriptive statistics of our analytical sample. In
section 4, we discuss our empirical strategy. Section 5 presents the results.
Finally, in section 6, we discuss our findings and conclusions.

2 Background

A large part of the population in India relies on solid fuels for cooking.
According to the latest available census data, approximately 85% of rural
households and only 30% of urban households report using solid fuels
for cooking.2 In addition to directly impacting those who cook with solid
fuels, these fuels also impose externalities on other household members
and neighbors.

Government agencies recognize the harmful effects of solid fuel use
and consequent IAP and have taken multiple steps to reduce the reliance
on dirty fuels for cooking and other allied activities. Indian government
provides relatively cleaner kerosene at a subsidized rate to Below the
Poverty Line (BPL) households. Kerosene is distributed through Public
Distribution System (PDS). Supply chain bottlenecks associated with PDS
often compel households to continue to rely on solid fuels for cooking
(Choudhuri and Desai, 2020). More recently Indian federal government has
implemented various schemes in order to promote the adoption of cleaner
cooking fuels like LPG. Under one such scheme, subsidized connections,
stoves, and regulators are provided to rural households.

Despite a large increase in access to and ownership of LPG, a large frac-

2Data from Population and Housing Census 2011, Table HL-10.
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tion of rural households continue to use solid fuels for cooking. Existing
work highlights the role of income, preferences, and gender inequities in
household task allocation as drivers of sustained solid fuel use for cooking
by rural households (Gupta et al., 2020). Easy access to solid fuel through
proximity to forests and owning agricultural land also contributes to con-
tinued reliance on solid fuel as the primary source of energy for cooking.

Use of solid fuel use has been shown to be associated with detrimental
health outcomes in India. Existing work documents the harmful health
effects of solid fuel use on health outcomes. This negative impact on
health due to solid fuel use is more pronounced for women as they are
primarily responsible for cooking and related household activities and thus
directly exposed to emissions generated from solid fuel use (Gupta, 2019).
Balakrishnan et al. (2019) use data from the Global Burden of Disease Study
2017 and show that approximately 0.5 million deaths can be attributed to
household air pollution. Using the same data source for an earlier year,
Smith (2000) estimate approximately 12-17 million Disability-Adjusted Life-
Year due to IAP in India. Using nationally representative household survey
data, Bassani et al. (2010) find that solid fuel use is positively associated
with early-life mortality, with the effect being more pronounced for girls.

Access to formal healthcare is widespread in India. Existing work
documents major reliance on the private sector for outpatient care services.
There are, however, large regional disparities in access to care (Ghosh, 2014).
While the relatively less affluent population relies on the public sector for
outpatient care, the continued reliance of higher-income households on the
private sector for outpatient care has widened disparities in access, and
quality of care received (Dwivedi and Pradhan, 2020; Mohanan et al., 2016).
Across income distribution, there has been a declining trend of public
health facility usage for inpatient care. This is partly due to perceived
low-quality care delivered in these facilities (Das and Hammer, 2014).

3 Data

The ideal data to examine the impact of IAP on health outcomes will
contain information on IAP exposure along with information on health
outcomes like ailments, hospital admissions, and medical expenditure on
treatment. While these data do not exist, for our empirical analysis, we
combine multiple data sources to causally identify the impact of IAP on

5



health outcomes. In this section, we describe each of these data sources and
also present descriptive statistics for our analytical sample.

3.1 NSS Data

Our main data comes from 75th round of NSS (NSS, 2019). This round
surveyed a random sample of households from rural and urban areas of
each district in India. NSS follows a two-stage random sampling method
wherein rural villages and urban wards are randomly selected in the first
stage. Households are then randomly sampled from each first-stage unit.

This round collected information on the detailed demographics of the
sampled households. Detailed information was collected on the morbidity
and mortality of household members. For morbidity, information on hos-
pitalization in the last 365 days is collected. Further, information on acute
ailments in the last 15 days for each household member is collected.

Treatment received for each ailment, irrespective of whether it resulted
in hospitalization or not, is also collected. The survey also collects informa-
tion on out-of-pocket expenditures. Detailed information on the deceased
household members in the last 365 days is also available.

Importantly, the survey also contains information on the primary source
of energy for cooking used by the household. Using this information, we
are able to categorize households into using solid fuel or not.3 In Figure 1,
we show the proportion of households using various fuels as the primary
source of energy for cooking. We note that there is significant variation in
the types of fuels that households use as the primary source of energy for
cooking.

3.2 Other Data

In addition to NSS data, we also use data from The Socioeconomic High-
resolution Rural-Urban Geographic Dataset on India (SHRUG) (Asher et al.,
2021). We use SHRUG to extract data on district-level forest cover. Forest
cover is constructed using high-resolution satellite data and a machine
learning model. These models allow for better distinctions between forests
and plantations.

3Household is assigned to using solid fuel as the primary source of energy for cooking
if it reports using firewood and chips or dung cake or coke/coal or charcoal.
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We use raw SHRUG data which contains information on the total forest
cover for each district and normalize it with the information on the number
of cells for the district to arrive at the average forest cover for the district.
Since NSS data correspond to districts from the 2013 Economic Census, we
use the information on these district identifiers to construct district-level
forest cover.

In Figure 2, we present forest cover for two years during which the
households were interviewed in the survey. We conclude from this figure
that there is significant across and within district variation in forest cover
for these two years. As we detail in section 4, we use district-level forest
cover measure to construct our instrumental variable.

We also use data from CAMS EAC4 to construct an annual measure
of ambient air pollution at the district-level. These data are derived from
satellites and provide comprehensive and continuous information on air
pollution. We use data on the particulate matter which is less than two and
one half microns or less in width, PM2.5. Using Population and Housing
Census 2011 district shapefiles, we construct a weighted average of PM2.5
concentration where the extent of overlap with the district polygon weights
each grid.

We present summary statistics for our analytical sample in Table 1. We
report summary statistics for variables that we use in our empirical specifi-
cations. We point out a few statistics from the table. First, on average, three
percent of respondents report having suffered any IAP-related ailment in
the last 365 days.4 Second, despite the strong push by the central govern-
ment to incentivize households to adopt clean cooking fuels, roughly 40%
of the households report using solid fuels as their primary source of energy
for cooking.

Third, our summary statistics show that a large number of households
do not have access to proper sanitation facilities, as documented by a lack
of access to a private latrine and piped water. Finally, we highlight almost
equal sex distribution for our analytical sample.

4Indoor air pollution (IAP) related ailments include hypertension, heart disease,
acute upper respiratory infections, cough, asthma, mental retardation, mental disor-
ders, headache, seizures or known epilepsy, weakness in limb muscles and difficulty in
movements, stroke, memory related ailments, discomfort or pain in the eye, burns, back
or body aches, and anemia.

7



4 Empirical Strategy

In order to causally identify the effect of IAP on health outcomes, we
estimate a fixed-effects specification. Our main specification is as follows.

yi = βSolidFuelh(i) + Xiγ + Xhδ

+ Stateh(i) + Monthdate(h(i)) × Yeardate(h(i)) + ϵi (1)

In equation (1), yi is the outcome of interest for respondent i. SolidFuelh(i)
is an indicator for whether the household h to which respondent i belongs
uses solid fuel as a primary source of energy for cooking or not. Xi is a
vector of individual controls. This vector contains the age of the respondent
and an indicator for whether the respondent is female or not. Xh is a vector
of household controls. This vector contains the number of household
members who have completed at least primary schooling, the size of the
household, an indicator for whether the household has access to a private
latrine, an indicator for whether the household has access to piped drinking
water, categorical variable for the religion of household with Hinduism
as the omitted category, and an indicator for whether the household is an
upper caste household or not.

In equation (1), we also control for a few fixed-effects. Specifically, we
control for state fixed-effects, Stateh(i). These account for all time-invariant
state characteristics that are common to all households in the state. We also
control time fixed-effects to account for temporal shocks to the outcome,
which are common to all households in the country. These are depicted as
Monthdate(h(i)) × Yeardate(h(i)) in equation (1), where date (h (i)) is the date
on which household h was interviewed. ϵi is idiosyncratic error term.

Our coefficient of interest in equation (1) is β. This gives the marginal
effect of a household using solid fuel as the primary source of energy
for cooking on the outcome of interest. Ordinary Least Squares (OLS)
estimation of equation (1) is likely to be plagued with endogeneity issues.
This could be due to reverse causality as poor health may reduce household
income which may force it to use dirtier fuels that are cheaper. There may
also be some omitted variables that our specification is not able to account
for. For instance, the unobserved intra-household bargaining power of
women may determine household fuel choice for cooking and also the
health outcomes of children.

To assuage endogeneity concerns, we implement an instrumental vari-
ables (IV) research design. We instrument for household’s use of solid
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fuel as the primary source of energy for cooking using the information on
district-level forest cover. As we show in Figure 1, firewood is the largest
share of fuel for households that do not use clean fuels for cooking. As
larger forest cover provides easy and cheap access to firewood, households
may be incentivized to use it as the cooking fuel of their choice (Bhatt and
Sachan, 2004; Biswas and Das, 2022; Gould et al., 2020).

Our first-stage specification is as follows.

SolidFuelh(i) = α + ζForestCoverd(h(i)) + Xiγ + Xhδ

+ Stateh(i) + Monthdate(h(i)) × Yeardate(h(i)) + ηi (2)

In equation (3), ForestCoverd(h(i)) is the percent of district d to which house-
hold h belongs that is classified as forest. Our second-stage specification is
as follows.

yi = α + β ˆSolidFuelh(i) + Xiγ + Xhδ

+ Stateh(i) + Monthdate(h(i)) × Yeardate(h(i)) + θi (3)

In equation (3), ˆSolidFuelh(i) is the predicted solid fuel use by the household
as the primary source of energy for cooking. In both equations (2) and (3),
the rest of the variables are the same as that in equation (1).

We use district-level forest cover information from SHRUG. We detail
how we construct this measure in section 3. In Figure 3, we present the
correlation between district-level forest cover and whether the household
uses solid fuel as the primary source of energy for cooking. We note that
these estimates suggest that higher forest cover increases the likelihood
that household uses solid fuel as the primary source of energy for cooking.

Our IV design is motivated by existing work that uses forest cover as an
instrument for household fuel choice after conditioning for other variables
and fixed-effects (Basu et al., 2020; Biswas and Das, 2022). In order for
the instrument to be valid, the assumption is that instrument affects the
outcome of interest only through its effect on the choice of solid fuel as
the primary source of energy for cooking by the household. While this
assumption is inherently untestable, we provide several tests in section 5
to lend credence to instrument validity.
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5 Results

In this section, we present and discuss our results. We start by discussing
results from our main specifications in equation (1) to (3). We present
point estimates from these specifications in Table 2. In the first column,
we present point estimates from estimating equation (1), where we ignore
the endogeneity of solid fuel use by the household as its primary source
of energy for cooking. The point estimates show that the use of solid
fuel by the household increases the likelihood of the respondent reporting
suffering from IAP related ailment in the last 365 days.

In the second column, we present point estimates from our IV research
design. In these specifications, we instrument for solid fuel use by the
household with the district-level forest cover.5 The point estimates show
that the use of solid fuel use by the household as its primary source of
energy for cooking increases the likelihood of the respondent reporting
suffering from IAP related ailment in the last 365 days. Relative to the
first column, the point estimates are larger. Specifically, the use of solid
fuel by the household increases the likelihood that the respondent reports
suffering from IAP related ailment in the last 365 days by 3.9 percentage
points. Relative to the sample mean, this marginal effect corresponds to an
increase of 56.61%.

In the next column, we replace the dependent variable in our specifica-
tion with the number of days spent in the hospital.6 The dependent variable
takes a value of zero if the respondent does not report any hospitalization
and a value of one otherwise. With this specification, we aim to study
how solid fuel as the primary source of energy for cooking by household
impacts the likelihood that the respondent report having any time hospital-
ized. Our point estimates are statistically insignificant but indicate a very
small decline in the probability of respondents being hospitalized.

In column (4), we restrict the sample to those respondents who report

5We highlight that we have missing information on forest cover for a few districts.
Therefore, the sample size drops in moving from the first to the second column. We later
present point estimates from a specification where we replace missing forest cover values
with zero.

6We impute the number of days spent in the hospital as zero for those respondents
who do not repeat hospitalization either as an in-patient of a medical institution in the last
365 days or for acute ailments.
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spending any time hospitalized.7 We slightly alter our main specification
by replacing the variable of interest from whether the household uses solid
fuel as the primary source of energy for cooking or not to whether the
hospitalization was due to IAP related ailment or not. The dependent
variable for this specification is the same as that for the specification in
the previous column. Our aim is to study whether being admitted to
the hospital for IAP related ailment affect the amount of time respondent
report having spent in the hospital relative to non IAP related ailment. Our
point estimates suggest that, on average, a respondent report spending
an extra day in the hospital for an IAP related ailment hospitalization
relative to a hospitalization that is not IAP related. This result indicates that
hospitalizations that are driven by IAP related ailment are more intensive
as far as days spent in the hospital are concerned.

In the next two columns, we turn our attention to examining the impacts
on medical expenditure for treatment. In column (5), we estimate our main
specification but replace the dependent variable with the amount spent
on medical treatment for the treatment of an ailment that the respondent
report suffering in the last 365 days.8 Point estimates from this specification
suggest that medical expenditure goes down if the household that the
respondent belongs to reports using solid fuel as the primary source of
energy for cooking. Since the incidence of any ailment in the last 365 days
is rare and not all treatment results in out-of-pocket expenditure by the
patient, this result is not surprising. As households that use solid fuel as
the primary source of energy for cooking are also more likely to have lower
levels of income and wealth, they are unlikely to spend money on treatment
except for severe medical conditions. This may also lead to lower levels
of medical expenditure for these households, as indicated by our point
estimates.

In the last column, we look at how the incidence of an IAP related
ailment affects medical expenditure for treatment relative to the incidence
of a non IAP related ailment. To operationalize this, we replace the variable
of interest in our main specification with whether the reported ailment is
IAP related or not. The dependent variable of interest is the same as that in

7Since this specification is conditional on hospitalization, the sample size drops consid-
erably relative to the main specification.

8We impute medical expenditure for those respondents who do not report suffering an
ailment in the last 365 days as zero. All medical expenditures are reported in thousands of
Indian rupees.
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the previous column. Our results suggest that relative to non IAP related
ailments, IAP related ailments lead to higher levels of reported medical
expenditure. This finding, although suggestive, lends further credence to
our results from column (4), as IAP related ailment is more intensive and
exerts a financial burden on households. Overall, results in Table 2 indicate
solid fuel use as the primary source of energy for cooking leads to a higher
incidence of IAP related ailments and hospitalizations for such ailments,
increases the number of days spent in hospital along with an increase in
medical expenditure for treatment of these ailments.

We next turn to establish the robustness of our main results. We present
results from these exercises in Table 3. In the first two columns of the table,
we repeat point estimates from our main specifications for both OLS and
IV estimations. In the third and fourth columns, we present point estimates
from specifications where we alter the fixed-effects in the specification.
Specifically, we replace state and year-month fixed-effects with state-year
and month fixed-effects. With this specification, we allow annual shocks
to vary by the state while also accounting for short-term temporal shocks
through month fixed-effects that are common to all households. The point
estimates in these two columns are very similar to point estimates from
our main specification. This helps us conclude that our main result is not
sensitive to specific fixed-effects that we employ in our main specification.

In the next column, we alter district-level forest cover, which is used to
construct our instrument. We use lagged district-level forest cover as the
instrument for whether the household uses solid fuel as its primary source
of energy for cooking. The point estimates from this empirical specification
are close to point estimates from our main specifications. This establishes
the robustness of our results to the exact definition of the instrument we
use.

In the next two columns, we examine the validity of our instrumental
variable design. In column (6), we alter our IV specification by replacing
the dependent variable with whether the respondent reports being female
or not. If the instrument is valid, we do not expect it to affect the likelihood
of the respondent being a female. The point estimates suggest that our
instrument does not affect the likelihood of the respondent being female.
This provides evidence towards the validity of our instrument. In the
next column, we use the earliest available forest cover at district-level as
the instrumental variable. With this specification, we aim to show that
only contemporaneous forest cover impacts households’ choice of solid
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fuel as the primary source of energy for cooking. The point estimates in
this column lend credence to instrument validity as we do not find any
statistically significant effect of early forest cover on a household’s adoption
of solid fuel as its primary source of energy for cooking.

In the next column, we show that our main results are not altered by
imputing forest cover values for districts that have missing forest cover
information. Specifically, for districts where we are unable to obtain infor-
mation on forest cover, we replace missing values with zeroes. We present
results from estimating our main specifications with this change in column
(7). Our point estimates suggest that our main results are not sensitive
to non-random missing observations for district-level forest cover. In the
next two columns, we change our definition of whether the household uses
solid fuel as the primary source of energy for cooking or not. Specifically, a
household is assigned to using solid fuel as the primary source of energy
for cooking if it reports using firewood and chips as its primary source of
energy for cooking. The results from these specifications suggest that our
main finding is not sensitive to the assignment of households using solid
fuel as the primary source of energy for cooking. Finally, in the last column,
we establish the robustness of our main result to controlling for ambient air
pollution levels.

In Table 4, we present results from our heterogeneity analysis.9 In the
first two columns, we replace our dependent variable with an indicator
for whether anyone in the household reported suffering an IAP related
ailment in the last 365 days. We note that these specifications are estimated
at the household-level. Our OLS and IV estimates show that household
using solid fuel as the primary source of energy for cooking increases the
likelihood that household has at least one member that reported suffering
an IAP related ailment in the last 365 days.

In the next two columns, we replace the dependent variable in our
main specification with an indicator for whether the respondent reported
suffering any ailment in the last 365 days. The point estimates in these two
columns suggest that the use of solid fuel as the primary source of energy
for cooking does not affect the likelihood of the respondent suffering any
ailment in the last 365 days. In the next two columns, we interact our

9We present results from subsample analysis as additional heterogeneity analysis. The
results from these estimations are presented in Table ??. In what follows, we discuss
results in Table 4 as subsample analysis does not permit us to conduct a test of equality of
point estimates for different subgroups.
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variable of interest, an indicator for whether the household uses solid fuel
as the primary source of energy for cooking, with an indicator for whether
the respondent is female (Cui et al., 2021).

The point estimates from our preferred IV specification suggest that the
effect of solid fuel use by the household as its primary source of energy
for cooking does not exert a differential effect by sex of respondent on the
likelihood of respondent reporting suffering an IAP related ailment in the
last 365 days. In a similar specification in the next two columns, we interact
our variable of interest with an indicator for whether the household is in
a rural area. The point estimates from this specification suggest that the
effect of solid fuel use by the household as its primary source of energy for
cooking on the likelihood of respondent reporting suffering an IAP related
ailment in the last 365 days does not differentially differ by whether the
household is in a rural area.

In the next two columns, we interact our variable of interest with an
indicator for whether the household has medical insurance or not. The
point estimates from this specification suggest that solid fuel use by the
household as its primary source of energy for cooking exerts a differential
effect on the likelihood of respondent reporting suffering an IAP related ail-
ment in the last 365 days by whether the household has medical insurance.
Specifically, a household having medical insurance reduces the likelihood
that the respondent reports suffering an IAP related ailment in the last 365
days relative to a respondent from a household without access to medical
insurance.

We next explore the heterogeneity of our main effect with the level of
MPCE in the next two columns.10 We interact our variable of interest with
MPCE. Our preferred IV specification suggests that higher levels of MPCE
lead to a lower likelihood of respondents reporting suffering an IAP related
ailment in the last 365 days, albeit this differential effect is not statistically
significant.

We next turn to examine the heterogeneity of our main effect with
whether the respondent reports being a housemaker or not. A respondent
who reports being a housemaker is more likely to be directly exposed to
the air pollution produced due to households’ use of solid fuel for cooking.

10We point out that the MPCE is the usual expenditure for the household. Therefore,
we do not believe that this is likely endogenous to a household’s use of solid fuel as its
primary source of energy for cooking.
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We, therefore, expect those respondents who report being a housemaker to
be more likely to report suffering an IAP related ailment. Point estimates
from our preferred IV specification lend credence to our hypothesis as we
find a statistically significant differential impact of the respondent being a
housemaker on the likelihood of them reporting suffering an IAP related
ailment.

Finally, in the last two columns, we show that the likelihood of re-
spondents reporting suffering an IAP related ailment is not differentially
affected by solid fuel use for cooking if they belong to a household that
has a vulnerable age member or not.11 Given increased healthcare contact
for households with a member in a vulnerable age group, it is plausible
that respondents are more aware of IAP related ailments and thus report
more ailments if they belong to a household with a vulnerable member. On
the other hand, a vulnerable age member of the household may make it
adopt better ventilation techniques which might reduce the negative health
effects of IAP. Against this backdrop, the statistically insignificant effect is
not entirely surprising.

6 Discussion and Conclusion

Using nationally representative data from India, we examine how solid fuel
use affects health outcomes. We rely on an instrumental variables design
to uncover the causal effect of solid fuel use on these outcomes. We use
district-level forest cover as an instrument for households’ fuel choices. Our
results show that the use of solid fuel for cooking increases the likelihood
that respondent reports having suffered IAP related ailment in the last
365 days. Specifically, the use of solid fuel by the household increases the
likelihood that the respondent reports suffering from IAP related ailment
in the last 365 days by 3.9 percentage points. Relative to the sample mean,
this marginal effect corresponds to an increase of 56.61%.

We also find that respondent report having spent more days in the hos-
pital, conditional on being admitted to the hospital, for IAP related ailments
relative to non-IAP related ailments. Further, the medical expenditure for
IAP related ailments also increases. Our results show that the effects are

11A household is classified as having a vulnerable age group member if any member of
the household is aged less than six or over 60.
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more pronounced for respondents who report being housemakers and
without access to health insurance. Albeit statistically insignificant, our
results show that the effects are more pronounced for females, those who
reside in rural areas, those with lower levels of monthly per capita expen-
diture, and those who belong to a household with at least one member in
the vulnerable age group. We also establish the robustness of our results
through multiple checks.

We compare our point estimates to existing work examining the health
effects of IAP. Using nationally representative survey data from India, Basu
et al. (2020) find that the use of solid fuel for cooking increases under-five
mortality by 4.9 percentage points. This effect is greater but very similar to
our point estimate for morbidity. Using fuel switching between two waves
of nationally representative panel data, Azam (2023) find that the use of
clean cooking fuel by the household decreases the incidence of cough by
three percentage points. This effect is also very similar to our point estimate.
We, therefore, conclude that our point estimate on ailment incidence is very
similar to existing work.

While we uncover consistent estimates of solid fuel use as the primary
source of energy for cooking by the household on various health outcomes,
our work has some limitations. First, we are unable to longitudinally
follow individuals limiting our ability to study long-term health outcomes.
Second, we are unable to obtain direct measures of IAP. Third, we only
see the extensive margin of health impact through the self-reporting of
respondents suffering an IAP related ailment. Fourth, we are unable to get
information on repeat hospital encounters for the same ailment. We hope
future work addresses these and other limitations of our work.
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Figure 1: Proportion of Households Using Different Fuel Types
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Note: Data from NSS 75th round. Survey weights are used to account for complex survey
design.
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Figure 2: District Forest Cover (%)
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Note: District level forest cover for 2017 and 2018. Data comes from The Socioeconomic
High-resolution Rural-Urban Geographic Dataset on India (SHRUG) (Asher et al., 2021).
Each sub-figure shows average forest cover in the district and uses 2011 Population and
Housing Census district shapefiles.
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Figure 3: First-stage
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Table 1: Summary Statistics

N Mean SD Min Max

Individual Controls
IAP Ailment 555,352 0.039 0.194 0.00 1.00
Age (Years) 557,212 29.322 18.830 0.00 115.00
Female 555,315 0.483 0.500 0.00 1.00
Household Controls
Household uses Solid Fuel 557,210 0.426 0.495 0.00 1.00
Primary Completed Adults 556,652 2.305 1.647 0.00 19.00
Household Size 557,212 5.353 2.330 1.00 31.00
Access to Private Laterine 557,212 0.661 0.473 0.00 1.00
Access to Piped Water 557,212 0.417 0.493 0.00 1.00
Upper Caste 557,212 0.264 0.441 0.00 1.00
District-Level Controls
Forest Cover (%) 506,574 10.226 8.883 0.00 75.98
PM2.5

(
µg/m3) 432,706 96.598 49.520 4.82 242.18

Notes: Indoor air pollution (IAP) related ailments include hypertension, heart dis-
ease, acute upper respiratory infections, cough, asthma, mental retardation, mental
disorders, headache, seizures or known epilepsy, weakness in limb muscles and
difficulty in movements, stroke, memory related ailments, discomfort or pain in the
eye, burns, back or body aches, and anemia. Household is assigned to using solid
fuel as the primary source of energy for cooking if it reports using firewood and
chips or dung cake or coke/coal or charcoal. The number of household members
with at least primary education includes only those who are 18 years or older. A
household is assigned as having access to a private latrine if it reports having access
to a latrine with exclusive use. Household is assigned as having access to piped
water if it reports having access to piped water dwelling/premises/yard or outside.
The sample contains data from NSS 75th round, CAMS EAC4, and The Socioeco-
nomic High-resolution Rural-Urban Geographic Dataset on India (SHRUG) (Asher
et al. (2021)). Survey weights are used to account for complex survey design.
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Table 2: Effect of Indoor Air Pollution on Health Outcomes – Main Effect

(1) (2) (3) (4) (5) (6)
OLS IV IV OLS IV OLS

IAP Ailment IAP Ailment Days in Hospital Days in Hospital Medical Expenditure Medical Expenditure

Household uses Solid Fuel=1 0.00148 0.03906 -0.00731 -6.13494
(0.00082)∗ (0.01444)∗∗∗ (0.02078) (1.28027)∗∗∗

IAP Ailment=1 1.11057 17.73009
(0.07987)∗∗∗ (0.34504)∗∗∗

Individual Controls
Age (years) 0.00108 0.00106 0.00217 0.03906 0.09622 0.08106

(0.00002)∗∗∗ (0.00002)∗∗∗ (0.00003)∗∗∗ (0.00183)∗∗∗ (0.00205)∗∗∗ (0.00179)∗∗∗

Female=1 0.00056 0.00116 0.09721 -1.72189 0.26302 0.32205
(0.00068) (0.00071) (0.00100)∗∗∗ (0.07507)∗∗∗ (0.06396)∗∗∗ (0.05995)∗∗∗

Household Controls
Primary Completed Adults -0.00118 0.00134 -0.00128 0.03802 -0.15157 0.30429

(0.00023)∗∗∗ (0.00100) (0.00143) (0.02344) (0.08923)∗ (0.01709)∗∗∗

Household Size -0.00669 -0.00787 -0.01287 0.03060 -0.17708 -0.30203
(0.00016)∗∗∗ (0.00055)∗∗∗ (0.00079)∗∗∗ (0.01667)∗ (0.04798)∗∗∗ (0.01183)∗∗∗

Access to Private Latrine=1 0.00109 0.00889 -0.00224 -0.31717 -0.52340 0.67596
(0.00084) (0.00300)∗∗∗ (0.00430) (0.07822)∗∗∗ (0.26014)∗∗ (0.06065)∗∗∗

Access to Piped Water=1 0.00348 0.01211 -0.00057 0.03283 -1.05691 0.15349
(0.00081)∗∗∗ (0.00315)∗∗∗ (0.00452) (0.07207) (0.29209)∗∗∗ (0.07132)∗∗

Islam 0.00496 0.00638 0.00211 -0.30735 -0.62477 -0.48133
(0.00105)∗∗∗ (0.00125)∗∗∗ (0.00172) (0.08571)∗∗∗ (0.09810)∗∗∗ (0.07917)∗∗∗

Other Religion 0.00076 -0.00157 -0.00242 -0.20087 0.58342 0.25518
(0.00159) (0.00189) (0.00259) (0.14376) (0.21760)∗∗∗ (0.15983)

Upper Caste=1 0.00226 0.00703 -0.00067 -0.01591 0.49470 1.35524
(0.00085)∗∗∗ (0.00206)∗∗∗ (0.00296) (0.07271) (0.18619)∗∗∗ (0.07681)∗∗∗

State FE ✓ ✓ ✓ ✓ ✓ ✓
Year × Month FE ✓ ✓ ✓ ✓ ✓ ✓

Dep. Var. Mean 0.069 0.069 0.154 6.015 3.425 3.425
KP F-Statistic 1562.237 1562.237 1552.107
N 554,627 504,416 504,416 85,321 503,963 554,115

Notes: Heteroskedasticity robust standard errors in parentheses. (* p<.10 ** p<.05 *** p<.01). Each observation in all columns is at the respondent level. The dependent
variable in first two columns is an indicator for whether the respondent suffered any indoor air pollution (IAP) related ailment in last 365 days or not. The dependent variable in
the third column is number of days spent in hospital. The dependent variable in the fourth column is number of days spent in hospital for medical treatment received as
in-patient of a medical institution during the last 365 days. The dependent variable in the fifth and sixth column is medical expenditure in thousands of rupees. IAP related
ailments include hypertension, heart disease, acute upper respiratory infections, cough, asthma, mental retardation, mental disorders, headache, seizures or known epilepsy,
weakness in limb muscles and difficulty in movements, stroke, memory related ailments, discomfort or pain in the eye, burns, back or body aches, and anaemia. Household is
assigned to using solid fuel as primary source of energy for cooking if it reports using firewood and chips or dung cake or coke/coal or charcoal. The sample contains data from
NSS 75th round and The Socioeconomic High-resolution Rural-Urban Geographic Dataset on India (SHRUG) (Asher et al. (2021)).
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Table 3: Effect of Indoor Air Pollution on Health Outcomes – Robustness
Checks

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
OLS IV OLS IV IV OLS IV IV OLS IV IV

Baseline Baseline Alternate FE Alternate FE Alternate Female Early Full Alternate Alternate Air
Forest Cover Forest Cover Forest Cover Solid Fuel Solid Fuel Pollution

Household uses Solid Fuel=1 0.00148 0.03906 0.00154 0.03453 0.03062 0.00832 0.03598 0.00070 0.03910 0.05755
(0.00082)∗ (0.01444)∗∗∗ (0.00082)∗ (0.01423)∗∗ (0.01494)∗∗ (0.01240) (0.01355)∗∗∗ (0.00082) (0.01445)∗∗∗ (0.02345)∗∗

Individual Controls
Age (years) 0.00108 0.00106 0.00108 0.00106 0.00106 0.00026 0.00107 0.00108 0.00108 0.00106 0.00101

(0.00002)∗∗∗ (0.00002)∗∗∗ (0.00002)∗∗∗ (0.00002)∗∗∗ (0.00002)∗∗∗ (0.00004)∗∗∗ (0.00002)∗∗∗ (0.00002)∗∗∗ (0.00002)∗∗∗ (0.00002)∗∗∗ (0.00002)∗∗∗

Female=1 0.00056 0.00116 0.00056 0.00114 0.00113 0.00104 0.00068 0.00056 0.00114 0.00045
(0.00068) (0.00071) (0.00068) (0.00071) (0.00071) (0.00070) (0.00068) (0.00068) (0.00071) (0.00077)

Household Controls
Primary Completed Adults -0.00118 0.00134 -0.00118 0.00103 0.00077 -0.01125 -0.00072 0.00109 -0.00123 0.00110 0.00275

(0.00023)∗∗∗ (0.00100) (0.00023)∗∗∗ (0.00099) (0.00103) (0.00051)∗∗∗ (0.00087) (0.00092) (0.00023)∗∗∗ (0.00092) (0.00161)∗

Household Size -0.00669 -0.00787 -0.00669 -0.00771 -0.00756 0.00682 -0.00675 -0.00793 -0.00665 -0.00767 -0.00864
(0.00016)∗∗∗ (0.00055)∗∗∗ (0.00016)∗∗∗ (0.00055)∗∗∗ (0.00057)∗∗∗ (0.00035)∗∗∗ (0.00048)∗∗∗ (0.00051)∗∗∗ (0.00016)∗∗∗ (0.00048)∗∗∗ (0.00086)∗∗∗

Access to Private Latrine=1 0.00109 0.00889 0.00109 0.00797 0.00721 0.00698 0.00279 0.00773 0.00093 0.00815 0.01308
(0.00084) (0.00300)∗∗∗ (0.00084) (0.00296)∗∗∗ (0.00309)∗∗ (0.00172)∗∗∗ (0.00261) (0.00274)∗∗∗ (0.00084) (0.00274)∗∗∗ (0.00495)∗∗∗

Access to Piped Water=1 0.00348 0.01211 0.00347 0.01118 0.01033 0.00597 0.00562 0.01035 0.00332 0.01187 0.01705
(0.00081)∗∗∗ (0.00315)∗∗∗ (0.00081)∗∗∗ (0.00312)∗∗∗ (0.00325)∗∗∗ (0.00164)∗∗∗ (0.00273)∗∗ (0.00280)∗∗∗ (0.00081)∗∗∗ (0.00306)∗∗∗ (0.00549)∗∗∗

Islam 0.00496 0.00638 0.00500 0.00621 0.00602 -0.01038 0.00507 0.00643 0.00491 0.00575 0.00746
(0.00105)∗∗∗ (0.00125)∗∗∗ (0.00105)∗∗∗ (0.00124)∗∗∗ (0.00126)∗∗∗ (0.00216)∗∗∗ (0.00121)∗∗∗ (0.00120)∗∗∗ (0.00104)∗∗∗ (0.00115)∗∗∗ (0.00161)∗∗∗

Other Religion 0.00076 -0.00157 0.00081 -0.00121 -0.00109 -0.00164 0.00018 -0.00117 0.00081 -0.00174 -0.00388
(0.00159) (0.00189) (0.00159) (0.00187) (0.00190) (0.00326) (0.00183) (0.00180) (0.00159) (0.00192) (0.00266)

Upper Caste=1 0.00226 0.00703 0.00226 0.00643 0.00593 0.00830 0.00304 0.00652 0.00215 0.00647 0.00919
(0.00085)∗∗∗ (0.00206)∗∗∗ (0.00085)∗∗∗ (0.00204)∗∗∗ (0.00213)∗∗∗ (0.00173)∗∗∗ (0.00183)∗ (0.00187)∗∗∗ (0.00085)∗∗ (0.00188)∗∗∗ (0.00308)∗∗∗

Forest Cover (%) 0.00009
(0.00012)

State FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
State × Year FE ✓ ✓
Year × Month FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Month FE ✓ ✓

Dep. Var. Mean 0.069 0.069 0.069 0.069 0.069 0.490 0.069 0.069 0.069 0.069 0.069
KP F-Statistic 1562.237 1604.762 1460.767 2088.238 1835.169 1577.401 602.665
N 554,627 504,416 554,627 504,416 504,416 504,418 504,416 554,627 554,627 504,416 430,840

Notes: Heteroskedasticity robust standard errors in parentheses. (* p<.10 ** p<.05 *** p<.01). Each observation in all columns is at the respondent level. The dependent variable in each column except column (6) is an indicator for
whether the respondent suffered any indoor air pollution (IAP) related ailment in last 365 days or not. The dependent variable in column (6) is an indicator for whether the respondent is a female or not. IAP related ailments include
hypertension, heart disease, acute upper respiratory infections, cough, asthma, mental retardation, mental disorders, headache, seizures or known epilepsy, weakness in limb muscles and difficulty in movements, stroke, memory
related ailments, discomfort or pain in the eye, burns, back or body aches, and anaemia. Household is assigned to using solid fuel as primary source of energy for cooking if it reports using firewood and chips or dung cake or
coke/coal or charcoal. Lagged forest cover is used as instrument in the last two columns. In column (11), we also control for ambient air pollution using data from CAMS EAC4. The sample contains data from NSS 75th round and
The Socioeconomic High-resolution Rural-Urban Geographic Dataset on India (SHRUG) (Asher et al. (2021)).

Table 4: Effect of Indoor Air Pollution on Health Outcomes – Heterogenous
Effect

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)
OLS IV OLS IV OLS IV OLS IV OLS IV OLS IV OLS IV OLS IV
HH HH Any ailment Any ailment Females Females Rural Rural Insurance Insurance MPCE MPCE Housemaker Housemaker Vulnerable Vulnerable

Household uses Solid Fuel=1 0.01036 0.15613 -0.00293 -0.02995 -0.00042 0.02986 0.00527 0.00791 0.00173 0.04738 -0.00512 0.08823 -0.00020 0.01957 -0.00323 0.02627
(0.00331)∗∗∗ (0.06073)∗∗ (0.00123)∗∗ (0.02188) (0.00105) (0.02001) (0.00188)∗∗∗ (0.06415) (0.00098)∗ (0.01728)∗∗∗ (0.00144)∗∗∗ (0.02680)∗∗∗ (0.00091) (0.01630) (0.00135)∗∗ (0.02094)

Household uses Solid Fuel=1 × Female=1 0.00390 0.01835
(0.00138)∗∗∗ (0.02804)

Household uses Solid Fuel=1 × Rural=1 -0.00163 0.05375
(0.00203) (0.06483)

Household uses Solid Fuel=1 × Household has Insurance Coverage=1 -0.00036 -0.05956
(0.00344) (0.01606)∗∗∗

Household uses Solid Fuel=1 × Household MPCE 0.00080 -0.00433
(0.00011)∗∗∗ (0.00363)

Household uses Solid Fuel=1 × Member is a Housemaker=1 0.00630 0.08680
(0.00159)∗∗∗ (0.03232)∗∗∗

Household uses Solid Fuel=1 × Household has at least one vulnerable age member=1 0.00702 0.02036
(0.00151)∗∗∗ (0.02780)

Individual Controls
Age (years) 0.00185 0.00183 0.00108 0.00106 0.00108 0.00106 0.00107 0.00105 0.00108 0.00106 0.00123 0.00122 0.00108 0.00107

(0.00003)∗∗∗ (0.00003)∗∗∗ (0.00002)∗∗∗ (0.00002)∗∗∗ (0.00002)∗∗∗ (0.00002)∗∗∗ (0.00002)∗∗∗ (0.00003)∗∗∗ (0.00002)∗∗∗ (0.00002)∗∗∗ (0.00002)∗∗∗ (0.00002)∗∗∗ (0.00002)∗∗∗ (0.00002)∗∗∗

Female=1 0.09907 0.09936 -0.00088 -0.00611 0.00055 0.00117 0.00095 0.00167 0.00055 0.00100 0.01305 0.01448 0.00097 0.00155
(0.00102)∗∗∗ (0.00106)∗∗∗ (0.00087) (0.01113) (0.00068) (0.00071)∗ (0.00079) (0.00083)∗∗ (0.00068) (0.00072) (0.00087)∗∗∗ (0.00094)∗∗∗ (0.00068) (0.00071)∗∗

Member is a Housemaker=1 -0.02705 -0.05867
(0.00120)∗∗∗ (0.01255)∗∗∗

Household Controls
Primary Completed Adults 0.00730 0.01839 -0.00132 -0.00316 -0.00117 0.00134 -0.00140 0.00061 -0.00142 0.00134 -0.00163 0.00039 -0.00084 0.00180 -0.00140 0.00124

(0.00115)∗∗∗ (0.00473)∗∗∗ (0.00036)∗∗∗ (0.00151)∗∗ (0.00023)∗∗∗ (0.00100) (0.00024)∗∗∗ (0.00107) (0.00028)∗∗∗ (0.00113) (0.00024)∗∗∗ (0.00115) (0.00023)∗∗∗ (0.00100)∗ (0.00023)∗∗∗ (0.00106)
Household Size 0.00344 -0.00280 -0.01422 -0.01305 -0.00669 -0.00787 -0.00655 -0.00734 -0.00644 -0.00763 -0.00737 -0.00739 -0.00682 -0.00804 -0.00568 -0.00697

(0.00078)∗∗∗ (0.00272) (0.00024)∗∗∗ (0.00084)∗∗∗ (0.00016)∗∗∗ (0.00055)∗∗∗ (0.00016)∗∗∗ (0.00067)∗∗∗ (0.00019)∗∗∗ (0.00062)∗∗∗ (0.00017)∗∗∗ (0.00201)∗∗∗ (0.00016)∗∗∗ (0.00055)∗∗∗ (0.00016)∗∗∗ (0.00058)∗∗∗

Access to Private Latrine=1 0.01459 0.04216 -0.00264 -0.00727 0.00110 0.00886 0.00077 0.00816 0.00022 0.00963 0.00025 0.00974 0.00111 0.00953 0.00119 0.00912
(0.00330)∗∗∗ (0.01195)∗∗∗ (0.00127)∗∗ (0.00454) (0.00084) (0.00300)∗∗∗ (0.00084) (0.00315)∗∗∗ (0.00101) (0.00362)∗∗∗ (0.00084) (0.00286)∗∗∗ (0.00084) (0.00301)∗∗∗ (0.00084) (0.00307)∗∗∗

Access to Piped Water=1 0.01093 0.04463 0.00119 -0.00380 0.00348 0.01204 0.00232 0.00849 0.00403 0.01343 0.00305 0.01204 0.00335 0.01268 0.00337 0.01208
(0.00320)∗∗∗ (0.01307)∗∗∗ (0.00120) (0.00477) (0.00081)∗∗∗ (0.00315)∗∗∗ (0.00083)∗∗∗ (0.00245)∗∗∗ (0.00095)∗∗∗ (0.00366)∗∗∗ (0.00081)∗∗∗ (0.00373)∗∗∗ (0.00081)∗∗∗ (0.00316)∗∗∗ (0.00081)∗∗∗ (0.00319)∗∗∗

Islam 0.01499 0.01886 0.00544 0.00430 0.00495 0.00636 0.00424 0.00471 0.00632 0.00822 0.00531 0.00701 0.00589 0.00712 0.00433 0.00589
(0.00439)∗∗∗ (0.00491)∗∗∗ (0.00154)∗∗∗ (0.00185)∗∗ (0.00105)∗∗∗ (0.00125)∗∗∗ (0.00105)∗∗∗ (0.00119)∗∗∗ (0.00122)∗∗∗ (0.00146)∗∗∗ (0.00105)∗∗∗ (0.00155)∗∗∗ (0.00105)∗∗∗ (0.00125)∗∗∗ (0.00105)∗∗∗ (0.00128)∗∗∗

Other Religion -0.00028 -0.00955 0.00129 0.00239 0.00076 -0.00155 0.00125 -0.00011 -0.00020 -0.00214 0.00066 -0.00254 0.00057 -0.00174 0.00086 -0.00136
(0.00592) (0.00720) (0.00234) (0.00277) (0.00159) (0.00189) (0.00159) (0.00170) (0.00193) (0.00226) (0.00159) (0.00191) (0.00159) (0.00189) (0.00159) (0.00189)

Upper Caste=1 0.01093 0.02901 -0.00231 -0.00552 0.00225 0.00699 0.00185 0.00522 0.00227 0.00690 0.00100 0.00485 0.00199 0.00730 0.00272 0.00751
(0.00333)∗∗∗ (0.00888)∗∗∗ (0.00125)∗ (0.00312)∗ (0.00085)∗∗∗ (0.00207)∗∗∗ (0.00085)∗∗ (0.00270)∗ (0.00099)∗∗ (0.00227)∗∗∗ (0.00086) (0.00205)∗∗ (0.00085)∗∗ (0.00208)∗∗∗ (0.00085)∗∗∗ (0.00209)∗∗∗

Rural=1 -0.00620 -0.03359
(0.00092)∗∗∗ (0.01143)∗∗∗

Household has Insurance Coverage=1 0.00888 0.02375
(0.00171)∗∗∗ (0.00445)∗∗∗

Household MPCE 0.00037 0.00151
(0.00005)∗∗∗ (0.00032)∗∗∗

Household has at least one vulnerable age member=1 -0.01738 -0.02182
(0.00097)∗∗∗ (0.01087)∗∗

State FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Year × Month FE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Dep. Var. Mean 0.298 0.298 0.180 0.180 0.069 0.069 0.069 0.069 0.069 0.069 0.069 0.069 0.069 0.069 0.069 0.069
KP F-Statistic 302.139 1562.237 550.910 98.775 549.953 51.991 221.127 517.996
N 113,257 101,753 554,627 504,416 554,627 504,416 554,627 504,416 409,724 368,716 554,627 504,416 554,627 504,416 554,627 504,416

Notes: Heteroskedasticity robust standard errors in parentheses. (* p<.10 ** p<.05 *** p<.01). Each observation in all columns except first two columns is at the respondent level. Each observation in first two columns is at the household level. The dependent variable in all columns except first two columns is an indicator for whether the respondent suffered any indoor air pollution
(IAP) related ailment in last 365 days or not. The dependent variable in first two columns is whether any household member reported having suffered any IAP related ailment in last 365 days or not. IAP related ailments include hypertension, heart disease, acute upper respiratory infections, cough, asthma, mental retardation, mental disorders, headache, seizures or known epilepsy,
weakness in limb muscles and difficulty in movements, stroke, memory related ailments, discomfort or pain in the eye, burns, back or body aches, and anaemia. Household is assigned to using solid fuel as primary source of energy for cooking if it reports using firewood and chips or dung cake or coke/coal or charcoal. Household is assigned to rural area using NSS sector codes.
Household is assigned to having access to insurance if it reported having paid any insurance premium in last 365 days or not. Respondent is assigned to being a housemaker if it reported having usual prinicpal activity status as “attended domestic duties”. The sample contains data from NSS 75th round and The Socioeconomic High-resolution Rural-Urban Geographic Dataset on
India (SHRUG) (Asher et al. (2021)).
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Table 5: Effect of Indoor Air Pollution on Health Outcomes – First-stage

(1)
OLS

Use Solid Fuel for Cooking

Forest Cover (%) 0.00417
(0.00011)∗∗∗

Individual Controls
Age (years) 0.00011

(0.00003)∗∗∗

Female=1 -0.00376
(0.00118)∗∗∗

Household Controls
Primary Completed Adults -0.06731

(0.00044)∗∗∗

Household Size 0.03675
(0.00030)∗∗∗

Access to Private Latrine=1 -0.19948
(0.00153)∗∗∗

Access to Piped Water=1 -0.20981
(0.00139)∗∗∗

Islam -0.04191
(0.00186)∗∗∗

Other Religion 0.03391
(0.00260)∗∗∗

Upper Caste=1 -0.12801
(0.00143)∗∗∗

Dep. Var. Mean 0.371
N 504,416

Notes: Heteroskedasticity robust standard errors in parentheses. (*
p<.10 ** p<.05 *** p<.01). Each observation in all columns is at the
respondent level. The dependent variable is an indicator for whether
the household uses solid fuel as the primary source of energy for cook-
ing. Empirical specification also controls for state and year-month
fixed-effects. Household is assigned to using solid fuel as primary
source of energy for cooking if it reports using firewood and chips or
dung cake or coke/coal or charcoal. The sample contains data from
NSS 75th round and The Socioeconomic High-resolution Rural-Urban
Geographic Dataset on India (SHRUG) (Asher et al. (2021)).32
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